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Medical imaging is big business:
• One third of hospital’s equipment is for medical imaging
• 80% of all diagnoses are done on images
• Typical 800 bed hospital produces 10 Terabyte/year
• Sector grows steadily by 10% per year
• GE, Philips, Siemens: billions of dollars markets

Medical images are big:

• CT and MRI scan: typically 512 x 512, 800 to 2000 slices, 16 bit
(400 MB – 1 GB)

• Digital X-Ray, mammogram: 3000 x 2500 pixels, 16 bit (15 MB)
• Ultrasound: 256 x 256, 20 frames per second, 8 bit (80 MB/min)



Computer 
Tomography

Multi-slice CT: 4-64 slices per 
rotation (0.5 sec).
Full body trauma scan: 21 sec 



Applications
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peripheral bronchial
carcinoma = long tumour
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multi-phase study of the liver



Magnetic
Resonance
Imaging



Medical workstations quickly
become the super-assistants
of radiologists and surgeons

• 3D visualization
• Computer aided diagnosis
• Surgery planning
• Virtual endoscopy
• Tissue classification
• Interactive analysis
• etc.

The lightbox has disappeared,
now hundreds of workstations



De overwhelming amount of data calls for 
condensed presentation and analysis:
Strong demands on front-end visualizations 

Maximum Intensity Projection





Anna Vilanova, TU Vienna / TU Eindhoven - BMT

Virtual
endoscopy

Advanced volume 
visualization

Enhancement by
Gaussian curvature

PMS



Diffusion Tensor Imaging - visualization

Eigenvectors

Tensor components

Brownian motion of water:
  diffusion (sphere - ellipsoid)

Anna Vilanova, TU Eindhoven - BME



Berenschot – Vilanova – TUE/BMT

Color indicates
orientation

Visual ToolKit

www.vtk.org



In a prospective study based on screening exams performed on almost 13,000 
consecutive women over a one-year period, Ulissey and colleagues found that 
CAD increased breast cancer detection by 20% (Radiology, September 2001, Vol. 
220:3, pp. 781-786).

Mammography:

Computer Aided Diagnosis

CADx



CT lung pathology

CADx

Companies:

R2 Technologies
Deus Technologies

CADVision
iCAD
CadX

Philips
GE

Siemens
…



Biologically inspired computer vision
 → bio-mimicking

Multi-Scale Image 
Analysis



Gaussian derivative
profiles up to 4th order

Differentiation of
discrete data is done
by convolution with
Gaussian derivative
kernels
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Observation, sampling
= convolution by aperture



Many cells in the visual cortex function as derivative operators

Receptive fields measure
spatio-temporal structure

Model:
several orders
Gaussian
derivatives differential geometry



List of currently available functions:
• Differential Geometry

• Gaussian derivatives
• for any order
• for N dimensions

• Import / Export
• any dialect DICOM
• high field MRI
• 3D ultrasound
• 2-photon microscopy

• Orientation analysis
• Polar Fourier Transform
• 2D Hankel Transform

MathVisionTools

Scheduled:
• Nonlinear image registration
• PDE based edge preserving smoothing
• Motion from dense optic flow fields
• Active contours atlas mapping
• Snakes and levelsets
• Image retrieval (multi-scale)
• Multi-scale texture classification

Soon available:
• MIP (perspective and orthogonal)
• Image registration in 2D and 3D
• Mutual entropy & correlation measure
• Lung nodule detection
• Catheter detection by 3D orientation bundle
•Tensor voting for perceptual grouping
• Dynamic shape Eigenmode analysis
• Automatic updating system



Geometry-driven diffusion:
edge preserving smoothing

Original scale = 9



It is a divergence of a flow. We also call            the flux function. With
c = 1 we have normal linear, isotropic diffusion: the divergence of the 
gradient flow is the Laplacian. 

A conductivity coefficient (c) is introduced in the diffusion equation:
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Test on a noisy test image:

Note the preserved steepness
of the edges with the

strongly reduced noise.

The solution is knot known analytically, so we have to rely
on numerical methods, such as the forward Euler method.

d L = d s HÑ.c Ñ LL



In 3D:



Coherence enhancing diffusion

J. Weickert, 2001

If conductivity is dependent
on the second order structure tensor:



MR slice heartcoronary


scale

• toppoints

Edge focusing

Important
edges

survive
longer



Structures exist at their own scale:

Original             = e0 px          = e1 px          = e2 px           = e3 px

Noise edges



Example:

Lysosome
segmentation
in noisy 2-photon
microscopy
3D images of
macrophages.



slice24 slice21 slice25 slice18 slice22 slice 21

slice24 slice23 slice24 slice20 slice18 slice 24

First the 3D maxima are detected at scale σ = 3 pixels



We interpolate
with cubic splines
35 radial tracks
in 35 orientations
for 12 maxima 



The profiles are extremely noisy:

Observation: visually we can reasonably point the steepest edgepoints.



Edge focusing
over all profiles.

Choose a start
level based on
the task, i.e. find
a single edge.



Detected 3D points per maximum.

We need a 3D shape fit function.

Level= 40 Level= 40 Level= 40 Level= 40 Level= 40 Level= 40 Level= 40 Level= 40
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The 3D points are least square fit with 3D spherical harmonics:



Resulting detection:
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How can we find a dense
optic flow field from a motion 
sequence in 2D and 3D?

Many approaches are taken:

- gradient based (or differential);
- phase-based (or frequency domain);
- correlation-based (or area);
- feature-point (or sparse data) 
tracking.

Multi-scale optic flow



The  Lie  derivative  (denoted  with  the  symbol  LvÓ)  of  a
function FHgL  with  respect  to  a  vectorfield  vÓ  is  defined  as
LvÓ FHgL. The optic flow constraint equation (OFCE) states
that  the  luminance  does  not  change  when  we  take  the
derivative along the vectorfield of the motion:

LvÓ FHgL º 0



LvÓ FHgL = Ñ
ÓÖÖ

F.vÓ
LvÓ r = r Div vÓ + vÓ.Ñ

ÓÖÖ
r = 0

Multi-scale optic flow constraint equation:

For scalar images:

For density images:

The velocity field is unknown, and this is what we want 
to recover from the data. We like to retrieve the 
velocity and its derivatives with respect to x, y, z and t.
 
We insert this unknown velocity field as a truncated 
Taylor series, truncated at first order.



Multi-scale density flow: in each pixel 8 equations of third order and
8 unknowns:



A. Suinesiaputra, UMCL / TUE, MICCAI 2002



scale-space

For hierarchical image reasoning we consider
images on many resolutions simultaneously (like the eye)



Critical Points, Paths and Top Points

 

Maxima

Minimum

Saddles

Critical Points

Det(H)=0

Top Points



From the toppoints the image
can be reconstructed again



MR slice hartcoronair


scale

• toppoints

• graph
theory



A new
paradigm

in multi-scale
computer

vision:

Hierarchical 
reasoning
by graphs



Image guided database retrieval

Point cloud matching
(earth mover distance),
very efficient

Task

Frans Kanters, TUE BMT BioMIM

We can now reconstruct from the toppoints
the image again (with Mathematica)



Perceptual grouping (Gestalt) 
from orientations: robust detection

Catheter & electrode detection



Gaussian Orientation Bundle
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Context filters



Strong non-linear filtering in orientation space



Context orientation bundle with tensor voting

Erik Franken, TUE & PMS, 2004



Vessel detection
for Computer
Aided Diagnosis
in Mammography

E. Franken, M. van Almsick



List of currently available functions:
• Differential Geometry

• Gaussian derivatives
• for any order
• for N dimensions

• Import / Export
• any dialect DICOM
• high field MRI
• 3D ultrasound
• 2-photon microscopy

• Orientation analysis
• Polar Fourier Transform
• 2D Hankel Transform

Scheduled:
• Nonlinear image registration
• PDE based edge preserving smoothing
• Motion from dense optic flow fields
• Active contours atlas mapping
• Snakes and levelsets
• Image retrieval (multi-scale)
• Multi-scale texture classification

Soon available:
• MIP (perspective and orthogonal)
• Image registration in 2D and 3D
• Mutual entropy & correlation measure
• Lung nodule detection
• Catheter detection by 3D orientation bundle
•Tensor voting for perceptual grouping
• Dynamic shape Eigenmode analysis
• Automatic updating system

MathVisionTools

The numerical and symbolic power of Mathematica is used



You are invited for a 
mutual collaboration
to develop the library 
(on exchange basis)

Contact: prof. Bart M. ter Haar Romeny, PhD
dipl.ing. Markus van Almsick



Multi-scale watershed segmentation

Watershed are the boundaries of merging water basins, when the
image landscape is immersed by punching the minima.

At larger scale the boundaries get blurred, rounded and dislocated.



Regions of different scales can be linked by calculating the
largest overlap with the region in the scales just above.



The method is often combined with nonlinear diffusion schemes

E. Dam, ITU



Nabla Vision is an interactive 3D watershed segmentation tool
developed by the University of Copenhagen.

Sculpture the 3D shape by successively clicking precalculated
finer scale watershed details.
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Bev Doolittle: The forest has eyes

The challenge

How do we do it?


